TDI Power
Dynaload Products
Legacy Products
Dynalod Support
Customer Portal
bullet Etraveler
bullet DUNS#  00-216-3178
bullet CAGE# 09004
XBL Series Power From 800 to 6000 Watts, click here for more information

Electronic Loads offered by TDI Power

Test and Measurement Eelectronic Loads


The test and measurement industry is under pressure to keep abreast of various challenges: the battle to lower testing costs; an increasing number of versatile test systems' and more cost-effective test and measurement electronic load solutions.  Users demand greater functionality and flexibility from their T&M tool and at a cost-effective price.

To meet these industry demands, TDI Power Dynaload has developed a new line of electronic loads that offers industry-leading functionality at a competitive price.   The XBL series is a highly reliable, flexible and feature-rich test and measurement solution.   Contact TDI Dynaload today


For basic testing, the Dynaload is used to simulate many current levels in both constant current mode and constant resistance mode. The load regulation at various current levels is obtained by monitoring the change in output voltage. The Dynaload is also used to determine the current limit characteristics down to the point of short circuit current. The response characteristics of the power supply may be analyzed with the use of an oscilloscope when operating in pulse mode. Characteristics such as loop response, overshoot, undershoot, and load regulation may be determined from a single highspeed current pulse.

When testing a battery charger, the constant voltage mode will verify the operation of the charger into a constant voltage load, thus simulating a battery.


The Dynaload is used to test batteries by both analyzing life cycle and establishing the V/I characteristics. The load is operated in the constant current mode which freezes one of the variables when calculating the battery's power level. Some batteries require exotic waveform testing in order to simulate real life uses. This is accomplished by using the Dynaload’s internal pulse generator. Many different waveforms can be created through the use of variable current levels, frequency, duty cycle, and slew rate. The load may be controlled through the analog remote programming input for situations where the required waveforms are extremely complex. This input, scaled 0 to 10 volts, is directly proportional to the selected full-scale current.

The constant power mode is used to test batteries designed for UPS backup systems. This mode emulates the changing current demand as the battery voltage decays. These are the characteristics of both DC to DC converters and inverter input simulations.


With its high speed response characteristics, the Dynaload may be used to determine the output impedance of the fuel cell. The two established methods include the current dump method and the sine wave method. The current dump method requires the load to transition from a peak current to zero current in less than 10 microseconds. Then the internal impedance is derived from the rate of voltage rise of the fuel cell. Care should be taken when performing this test, because of transient fly-back voltages created by the inductance of the load cables. The sine wave method requires a sine wave current and the measurement of the phase angle between the current and voltage waveforms. This is a little less dramatic than the current dump method and the results are the same. Similar to the testing of batteries, the Dynaload may be used for fuel cell life cycle testing.


White Papers
Assuring reliability utilizing Lead Free Solder (TW00)

Powerful XBL Series Electronic Load 800 to 6000 Watts

The XBL Advantage
Testing Tomorrow's Power

Test and Measurement Electronic Loads for today's industry

print button

tdi brochure

TDI Power Corporate Capabilities

print button